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SUMMARY

In this paper a new, highly accurate method called PH is presented for the numerical integration of partial
differential equations. The method is applied for the solution of the one-dimensional diffusion equation.
Upon integrating the equation within a subdomain of space and time using the prismoidal approximation,
a three-point implicit scheme is obtained with a truncation error of order O(k*, h®), where k and h represent
the time and space steps respectively. The method is stable under the condition s = ak/h? < §(6), where
the function S(d) increases as the parameter & decreases from {; to negative values. In practice the method
behaves as unconditionally stable upon choosing an appropriate value for 8. A new formula is also adopted
for the implementation of a Neumann boundary condition, introducing a truncation error of order O(h*).
Numerical solutions are obtained incorporating Dirichlet and Neumann boundary conditions. The results
prove that our method is far more accurate than any other implicit or explicit method.

INTRODUCTION

The significance of the application of numerical schemes of high accuracy for the computational
solution of problems governed by partial differential equations is well known. Thus a large
number of numerical methods have been derived within the finite difference and finite element
frameworks, particularly for the solution of problems in fluid mechanics and heat transfer.

In constructing a numerical method, one encounters the question of stability and accuracy of
the obtained numerical solutions. If a very restrictive stability condition has to be satisfied, the
convergence of the numerical solution to the exact solution of a partial differential equation
requires an enormous number of iterations for the complete integration of the problem. This
has led to the development of various numerical schemes and their classification as methods of
explicit and implicit type. The advantage of implicit schemes is that they are usually uncondition-
ally stable, permitting the selection of an appropriate mesh which requires a reasonable number
of iterations for the complete integration of the problem. To illustrate the basic characteristics
of explicit and implicit schemes, we consider the one-dimensional diffusion equation, which
incorporates the same dissipative behaviour as that of flow problems with significant viscous
or heat conduction effects. The application of various numerical methods to the diffusion
equation, the determination of the corresponding stability criterion and the estimation of the
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order of the truncation error provide guidance in choosing the appropriate numerical algorithm
for the various viscous and heat transfer flow problems.
Let us consider the one-dimensional diffusion equation

ou 0%u 0

=

ot ox?
where u(x, t) may represent a quantity such as momentum, vorticity, mass or heat. If u(x, t)
represents the temperature as heat flows along an isolated rod of length | = 1, the constant «
is the thermal diffusivity and x and t are the space and time variables respectively. The function
#(x, t) may be subjected to initial and Dirichlet boundary conditions of the form

u(x’ tO) = f(X), u(O’ t) = CO(t)’ u(l, t) = Cl(t), (2)

where f(x), C(t) and C,(t) are known functions or constants. In the case where heat transfer is
taking place from the end of the rod at x = 0, we can impose a Neumann boundary condition
of the form

ou(0,
”; ) _ g0, (3)
X

where g(t) may be a constant. The accuracy of the implementation of the boundary condition
(3) drastically affects the accuracy of the obtained solution.

Several explicit and implicit methods are extensively discussed in the books by Richtmyer
and Morton,! Fletcher,? Ames® and Patankar.* The most popular explicit methods, listed in
Table 7.1 of Reference 2 and in Table 8.1 of Reference 1, are the forward time-centred space
(FTCS) and three-level (3L) schemes, which are conditionally stable for s = ak/h? < 1 with a
truncation error of order O(k?, h*). Here k and h are the time and space steps respectively. The
error can be reduced further to O(k?, h*) using the more restrictive conditions s = £ and s < 0-35
respectively. The more accurate 3L fourth-order (3L-4TH) scheme is described by equation (4)
below after substitution of the term L, .u?*! by L, u?~! and putting f = —0-5 —y + 1/12s. On
the other hand, the fully implicit scheme, the Crank-Nicolson scheme and the generalized
three-level (3LFI) scheme are unconditionally stable with truncation errors which vary from
O(k?, h?) to O(k?, h*).

Other higher-order schemes have been constructed within the Galerkin finite element method
using linear approximating functions. Following Fletcher,? we incorporate various finite differ-
ence and finite element three-level schemes in the equation

At Aup o
(1 + ’Y)Mx k - ny k = a[ﬂLxxu? + (1 - ﬂ)Lxxu?]’ (4)
where Aul*! = 't —uf and L, u" = (u?,, — 2u” + u’_,)/h%. The mass operator M, is defined
as M, = {9, 1 — 24, 8}, so that

M A = 8Auly | + (1 — 28)Au? + SAu_,. 5)

Various schemes are obtained for different values of the parameters 8, § and y. However, the
most accurate unconditionally stable schemes, having fourth-order accuracy O(k?, h*), are those
listed in Table I with y =0 or 1.

In this paper we develop a new numerical implicit method which we call PH. This method
is stable for s < S(9), where the function S(d) increases continuously to infinity as the parameter
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Table 1. Numerical schemes which are described by
equation (4) and their corresponding parameters with

y=0orl
Method M, B
FDM-4TH 0, 1, 0) B_(»)=05+7y—1/12s
FEM-AATH (4,41 B.() =05+ 7y + 1/12s
COMP (5 19 12) 05+

& decreases from 5 to negative values. Thus we have a stability region with a varying upper
limit. On the other hand, the method is highly accurate, having a truncation error of order
O(k*, h®). We also introduce a new approximation of higher accuracy for the implementation of
boundary conditions of the Neumann type.

The extension of our method to the numerical treatment of problems with linear or non-linear
convection and from one to three dimensions will be presented in a series of forthcoming papers.

DEVELOPMENT OF THE METHOD

Let us consider that the exact solution u(x, t) of equation (1) is approximated by the finite
difference solution u? = u(x;, t,), where x; = h(i — 1) and t, = k(n — 1) with i=1, 2,..., I and
n=1, 2, 3,..., N. Integrating equation (1) over x in the interval x;_; < x < x;,, using the
prismoidal formula

=

J uax = 3 (u,'+1 + 4“,‘ + ui— 1) + 0(h5)7 (6)

Xz

we have
Xi+1 6ud h < > N 4(614) N <6u> Xl g2y d |:<6u) du
—dx==||— — — =q — dx=a| [ — - =
x_, Ot 3L\Gt )it ot), \ot)_, ., Ox? 0x/ivy \0x/)i_,
=AMt ) T ax4 s \oxs ), '

Integrating equation (7) over ¢ in the inerval ¢, | <t <t,,,, we obtain

thi1 62 h 54
- (Au,":,‘ +4Au T 4 Aupt D) = 2ha j [(;:) +5 (a >]dt + O(h%) = 2hal + O(h®),
X"/ X i

th_1

®

n+1 ntl _

where Aul "' = u] u?~'. Considering that

1 1 Ou 2h% [3%u
e Loy = X! (Ui —2u; +u_y) = <6—x2>, + m (ﬁ)i + O(h*) 9)



260 P. HATZIKONSTANTINOU

and 0*u/0x* = o~ 20%u/ot?, because of (1), the integral I takes the form

e (] h? oty k W2 T/ou\tt [fou\ !
I = L dt = — n+1 +4ut + Ut 1 4+ — i _{ =
J <h2 i ¥ o ) 3 Lo WU F [(a:),. (a:)i ]

2

k h
= L™ +4ui +ul™") + 6k et (10)

n+1

where L,uf = uf*' — 2u? + u?~ 1. The last step of equation (10) was obtained by using the

approximation

ou\"t! ou\"~! ofu\" 2k3 2 k3 [0*u
kB L TR 7Y i Ok%) = L ur oK% (11
<at>i (ar>.~ <at2>i+ 6 <a> ()= i+ <a4>+ ) db

and neglecting terms of order equal to or higher than O(h?, k3). Substituting equation (10) into
equation (8), we obtain the final three-level implicit scheme
1 h2

o (At +4Au7 + At = 3h2 Lot + 4! +ul™ Y+ ok L, u?. (12)

In constructing this equation, we have neglected terms of order equal to or higher than O(k2, h?)
and O(k*, h*). However, the von Neumann stability analysis below indicates that the scheme is
unconditionally unstable for s = ak/h* > 0. This is due to the specific numerical coefficients 2,
1 and { which multiply the respective terms of equation (12).

Thus instead of equation (12) we adopt the modified equation

" [Au:l-tll + (1 - 25)Aun+1 + 5Au"+l] - [ﬁLxx :'+1 + (1 - ZB)Lxxu:" + ﬂLxxu?_l]

nh*
+ - L (13)

where the interelations between the parameters 6, f and 5 are going to be determined later.
Defining the mass operators as

MXE{(S’ 1 _26’ 6}9 M,E{ﬁ, 1—'2ﬁv B}’ (14)
so that
M, Louf = BL ! ™" + (1 — 2B)Luf + BL ul ™' = L, M, (15)

equation (13) can be written in the compact form
M AW = 2sL_ Ml + © Loul. (16)
s

The advantage of equation (16) is that it is applied at every node, producing a tridiagonal system
of equations of the form

! + et +equll = cauloy +ocqul + cauly g sl T+ coul T+ csultl,  (17)
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with

¢, =6—2ps, ¢y = 25(1 — 2B), ¢s =6+ 2Ps,
2
ey=1-25+4fs — 1, o= —ds(1 — 28—, co=1—26—4aps+ ",
S S N

which can be solved using the Thomas algorithm.

In studying below the accuracy of the method (16), we shall determine the functions f = f(9)
and # = 5(8) for which the truncation error is reduced to O(k*, h®). The best values of the
parameter & will be determined from the required stability condition on s.

Following our integration method, by expressing the functions u! in terms of u?*! and u ™'
via Taylor series expansions and strictly neglecting terms of order equal to or higher than
O(k?, h*), we can produce the equation of the composite (COMP) scheme.

n+1

TRUNCTATION ERROR AND STABILITY CONDITION

We denote the diffusion equation (1) and its discretized form (13) by D(u) = 0 and F(u) =
respectively. Substituting 7, the exact solution of equation (1) at the node (i, n), into F(iif) = 0
and expressing all the terms in Taylor series expansions about the node (i, n), we produce the
truncation error

= F(i¥) — D(i"). (18)

Thus, expressing ], , and #7_, in Taylor series with respect to @}, we have

g2\ okt [o*m\*  26hS (8"
2 AR R AR B
ity + (1 — 20)? + Sitl_, = " + Sh <6x2>,- + 5 <6x“>i e <6x6>,-+o’ (19)

where the last term is the remainder of the series with 0 < 8 < 1. Applying equation (19) in the
case of Au"*!/k, we have

1 ~ _ Al n+1 A n+1
;[6Au:‘111 + (1 = 28)Aal*t + dAui*{] = (7) + Sh? Ewe ( P >i
61’!4 64 A— n+1
+ O(hS). 20
() rom e

+1 —n—1
Similarly, expressing ;" and i}

relation

in Taylor series with respect to @, we obtain the

L..a 2 “\n
[BLxx TR + l - 2B Lxxu + ﬁLxx ui 1] Ll{ + :Bkz 0 M

W ). a2\ n ),
$

+ Bk* poes

<7> + O(k®). @1

The quantities Ag"*!, L, i" and L, i" in equations (20), (21) and (16) are expressed in terms
of the partial derivatives of &} using the Taylor approximations
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| R ou\" k* (o*a\" 2k* [o°mY" s

o =o)L ()2 o)+ o 22)
1 (ata\"  h?fota\"  2h* [o%a\" s

ﬁ L. u}= (ﬁ)l + Tz <ﬁ>l + — 61 (5—> + O(h), (23)
1 ofu\"  k? [o*u\" 2k* (0%

—La'=|—— — | — o(k3). 24
gz <6t2>,. 12 (a#)i Ter <at6>,. + 0l @49

Substituting these quantities successively into equations (20), (21) and (13) and neglecting terms
of order O(k™, h*) with m + v > 6, we obtain the final expression for the truncation etror (18) as

1 o*i 0% as*h® n\ 0%
Er=ah?25—-—q)" ~_2 Bh (s p-T)24
' “( 6 )a4+°‘ [ b+ s< 30)] % < B 2>ax8

1 g1 B\ 2%
7% [ AN LA | L
o [60 6" 3692 ( 10a)] x10 (@3)

If the first two terms of (25) become equal to zero for

11 1
=25_l, = - 5__, 26
1 6 p 6+1232< 30) (26)

the truncation error of our scheme is reduced to O(k?, h®). If in addition to equation (25) we put
26 —~ B — 5/2 = 0, we obtain the relation é = (30s> — 1)/30(12s* — 1). In this case the truncation
error is reduced further to O(k* h®) and the method is subjected to the stability condition

s < 1/\/5, which imposes a severe restriction on the choice of k for a given h.

The stability of the method is studied by applying a von Neumann analysis to the interior
points. Thus the error & = u? — (u})* between the solution u} of equation (13) and that which
is actually calculated, (u?)*, is expressed as a finite Fourier series

-2

=) etmkey(m DO 6,, = mnh, (27)

m=1

along the grid line i = 2, 3,..., I — 1 at the nth time level. Since equation (1) is linear, a single
Fourier component is introduced in the sum (27), i.e. £ = (G)"e¥'~ V¥ where G = e¢**. It is noted
that &"*!/¢" = G and (G)" represents G to the power n. The round-off errors associated with this
scheme are propagated with equation (13).

Hence, substituting &} into equation (13), dividing the resulting equation by G"e¥(~ D% and
putting x = cos 0, we obtain after some algebraic manipulations the equation

aG?* + bG + ¢ =0 with G = (—b + \/A)/2q, (28)
where
1 ) 1 5 1 )
= —[2(1 — x)s* + ys + £], b=—[8(1 — x)s* — 2¢}, c=—[201 — x)s* —ys + ],
3s 3s 3s
y=3—60(1 —x), = —6(0 — 15 + (0 — 361 — x), (29)

A=4[12(1 — x)2s? — 12(1 — x)e + 72].
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For 6 < f; we have £ > 0,7 > 0 and a = O for every x in the region —1 < x < 1.

The stability requirement is |G| < 1 for all x. A detailed investigation indicates that if a > 0
and A > 0, the coefficient b varies from positive to negative values as x increases from —1 to
+1. However, for b < 0 the inequalities —b + \/A <0 and —b — /A > 0 do not hold when
ac < 0. Thus G is given by equation (28) with —b + /A > 0 or —b — \/A < 0 and stability of
the solution is achieved under the conditions

0<G<1 for2az2 —banda+b+c¢=0, 30)
—1<G<0 for2azbanda+c>b. 31

For 0 < G <1 the conditions (30) always hold because 2a + b= 6(1 — x)s> + ys > 0 and
a+b+c=4s(1 — x) 2 0. For —1 < G <0 the required conditions are satisfied if

4
a+c—b=§~[—(1—x)sz+s]>0 or stg with 1 — x # 0. (32)

s 1—x

For x =1 we have ¢ >0, which is true for é < {5 From (32) we have that (1 — x)s? <
& < € + ys/2, which shows that the condition 2a — b = —4(1 — x)s? + 2ys + 4¢ > 0 is satisfied.
In the case A < 0 the condition |G| = |GG*| = (c/a)!/* < 1 is always satisfied when a > 0. When
—1 < G <0, the solution will have a decaying amplitude of oscillating sign as n — co.

The inequality (32) represents the stability condition of our scheme and is written as

-5 14 + 112
s<|é )¢ aly (33)
1—x 30(1 — x)
Considering that the right-hand side of (33) becomes minimum for x = —1, the stability
condition takes the form

s<SO)=—26+13 with 6 < 15 (34)

Consequently the function S(5) determines the upper limit of the stability region for s. It is
clear that the stability region increases as & decreases from {5 to negative values. The variations
in the functions #(), f(9) and S(3) for some of the most interesting values of é are given in Table
II. In practice our method behaves as an unconditionally stable implicit scheme upon choosing
an appropriate value for 4.

Table Il. Parametric values of #(8), B(8) and of S(d),
which is the upper limit of the stability region in our

method
0 n Bs=3 Bs=1) S(3)
5 —0-100 0166 0-166 0-387298
-5 —-0233 —-0033 0161 0532290
—% —0-500 —0433 0-150 0741619
-3 —1-166 —1433 0122 1-103026
-1 —2-166 —2933 0-080 1-488847




264 P. HATZIKONSTANTINOU

NEW NEUMANN BOUNDARY CONDITION APPROXIMATION

Before proceeding to the computational application of our scheme, we note that algorithm (13)
is applied to internal nodes. At the boundary nodes the application of Dirichlet boundary
conditions of the form (2) does not create any difficulty, because the only values required are
u! = Cj and uf = C7] at nodes 1 and I respectively. However, in the case of Neumann boundary
conditions of the form (3) a knowledge of the solution outside the computational domain is
required. In the case of a Neumann boundary condition du(0, t)/dx = g(t) at the node (i = 1, n),
one of the following two formulae is used:

”—2—;’? —g" or ul=u}—hg" (35)
W —y"
S =d or uh=ui— 2k, (36)

introducing a truncation error of order O(h) and O(h?) respectively. In both cases equation (35)
or (36) is combined with a numerical scheme centred at the node (1, n) for the elimination of
terms such as u'} or uj. However, the use of (35) or (36) in conjuction with a numerical algorithm
of higher accuracy results in the propagation of the corresponding error along the x-grid line
for all later times, thus dramatically reducing the accuracy of the method.

To avoid the previous disadvantageous, we present a new technique for the implementation
of a Neumann boundary condition. Integrating equation (3) using the formula (6), we have

—dx = u=u,, —U_, =-|-— - -
x_, 0X - il T3 \ox ), ox); \0x/;_,
h ou ou
=26 ) 4T s 5)
3 |: (03(),- + <6x3>,~ + O(h ):I + O(h°) 37)

Substitution of d*u/dxdt = ad>u/dx> into equation (37) yields the final formula

R 1 WA N CO o
u" -y, = _— —_ —
LT T3 N\ ex/, | o at \ox/,

with a truncation error of O(h®). The term (du/dx); is the known boundary condition at the node
i. If we assume that there are Neumann boundary conditions at the end points of the interval
x; < x < x, given by

ou(x, 1) ou(x;, t)
— = =g, 1 = g,(0) (39)
Ox Ox
their corresponding approximate formulae at x, and x, are written via (38) as
h h* (dg,\"
no__ . 6 n — | =
u; — Up 3[ g1 + . <8t>]’ (40a)
r— i = | gy + 1 (22) (40b)
U — Ui =- — =1 |
1+1 1=3 g2 « \ ot

Using these relations, the values of 4} and uf, | are eliminated from the algebraic equations of
the interior points.
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The method which we have developed above can be generalized to the case of more
complicated partial differential equations than the diffusion equation.

RESULTS AND DISCUSSION

Numerical results have been obtained with our PH scheme using Dirichlet and Neumann
boundary conditions. These results are compared with those obtained with the aforementioned
(see Introduction) explicit and implicit schemes as well as with the corresponding exact
solutions.

We begin our study by considering the transient heat conduction along an insulated
rod which is in contact at its two ends with two hot reservoirs. The temperature u(x, t) governed
by equation (1) is subject to Dirichlet boundary conditions

w(0, t) = u(1, t) = 100 °C, (41)
with initial temperature u(x, 0) = 0 °C and thermal diffusivity « = 0-01. The exact solution of
the problem is given by?

u,(x;, t,) = 100 — f _40 sin[(2m — 1)mxJe *@m— D=, (42)
m=1 (2m — ln

The RMS error between the exact and the numerical solution is evaluated from the formula
I 1/2
RMS = ( Y - uex,)2/1> 43)
i=1

Applying our method to u} with n > 3, we calculate u! from the initial conditions and u? from
the application of the COMP method. The variations in u(x, t) along the rod at t = 45 and 125
are shown in Figure 1. The accuracy of our PH scheme (13) is estimated by studying the
calculated RMS errors (Table III) at ¢t = 12 for grids with & = 0-05, 0-1 and 0-2 and parametric
values s = 0-166,0-3,0-5, 1 and 6 = 4, — 35, —L, —1, —1. These results were obtained with the
initial condition defined by the exact solution (42) at t =45 in order to avoid errors in

100

t= 1250

T

50

1
0 X 05 1

Figure 1. Variation in u(x, t) subject to Dirichlet boundary conditions u(0, t) = u(1, t} = 100 °C at t = 45 and 12-5
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Table III. Estimation of the accuracy of our method subject to the Dirichlet
boundary conditions (41) at ¢t = 12

RMS RMS RMS

s 5 (8=02 (h = 01) (h = 005) r

3 1 0000480 0763904 x 10~5 0127209 x 10°° 59
~ % 0000557 0853179 x 10°°  0-140273 x 10~° 59
_" 0000780 0105388 x 10*  0-167693 x 1076 59
1 0001576 0170252 x 107*  0-242563 x 10°° 6.1
~1 0002518 0317568 x 10°*  0-369892 x 10~° 6.4

03 L 0000815 0105364 x 10°*  0-165030 x 10~ 59
~ T 0000822 0122489 x 10°*  0-190026 x 10~° 60
_1° 0001277 0160599 x 10°*  0-241909 x 1076 60
—Y 0002783 0281840 x 10*  (0-381190 x 10~ 62
—1 0004433 0551824 x 10°*  0-614881 x 1076 64

0 L 0040334 0000108 0-000168 —06
~P 0013143 0000114 0-182929 x 10~ 59
-1 o0ms127 0000133 0208336 x 10°° 60
T 014768 0000193 0276851 x 10~° 61
1 023259 0000325 0-392451 x 10~ 63

10 L 0210527 0016112 0254131 ~39
~L 0183352 0002857 0001852 06
I 0154849 0001036 0-000018 58
Y 0146756 0001271 0-000021 59
1 0164526 0001791 0-000026 60

implementing the boundary conditions and for comparison with other similar results in Table
V. The approximate convergence rate expressing the ratio of the RMS errors for h = 0:1 and
005 is given by?

r=In(RMS,_o../RMS, _¢.05)/In 2 44)

and is also presented in Table V. We observe that the accuracy of the scheme is increased even
for large values of h as s decreases. For a specific value of s the accuracy of the method increases
upon choosing a value for é for which the upper limit of the stability region S(J) is nearer to s.
On the other hand, as s increases to values larger than S(d) for a specific value of 8, instabilities
are introduced in the numerical solution, yielding large RMS errors. This is more pronounced
when s = 1 and 8 = 54, for which S(8) = 0-387, yielding a negative r. However, these instabilities
are reduced smoothly as the step h increases. It is clear that for s < 0-3 the error behaves like h°.

In Table IV the error distributions (¥ — u,,)} are given at t = 12-5 for grids with = 0:1 and
0-2 and parametric values s = 0-3, 1 and § = 45, — 1. For s = 1 the error is larger at § = 45 than
that at 6 = —3} near the boundaries because of the strong induced instabilities at & = 5. For
s = 0-3, which is well within the stability range determined by é = 4; and —{, the error becomes
larger at the middle of the rod.

The accuracy of our scheme is compared with that of the implicit schemes FDM-4TH,
FEM-4TH and COMP and with the accuracy of the explicit schemes FTCS and 3L-4TH in
Table V. All these methods have been described in the Introduction. The results of the methods
with an asterisk have been taken from Reference 2, while the results of the PH and COMP
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Table 1V. Error distribution (u — u,); of our solution subject to the Dirichlet boundary conditions (41) at

t =125

x=0 02 04 0-6 08 1
s=1,0=4 0 —2:238 x 1072 1-453 x 1072 1-453 x 1072 —2238 x 1072 0
h=0106= -} 0 9511 x 1074 1-882 x 1073 1-882 x 1073 9511 x 107# 0
s=1,0=4 0 —3456 x 107! 1-162 x 107! 1162 x 107! —3456 x 107! 0
h=0246= -1 0 —7621 x 1072 2425 x 107! 2425 x 107! —7621 x 1072 0
5=03,6=3 0 7-542 x 107°¢ 1:374 x 1073 1:373 x 1073 7-531 x 1076 0
h=01,86= -} 0 1117 x 1073 3-620 x 10°°% 3619 x 10°° 1-116 x 1073 0
s=03,0=1% 0 8717 x 107* 5748 x 1074 5748 x 107# 8716 x 10°* 0
h=026= -1 0 8306 x 10~ 3589 x 1073 3589 x 1073 8306 x 107* 0

methods have been obtained by us. For s = 1 and & = 0-2 the PH scheme gives on average an
error 37% smaller than the error of the FEM schemes and 81% smaller than the error of the
FDM implicit schemes. For s = 0-41 and h = 0-2 the PH scheme gives on average an error 65%
smaller than the error of the FDM and COMP schemes and 99% smaller than the error
of the explicit schemes. However, in all cases, as h decreases to 0-1, the average error of our
scheme is about 100% smaller than the corresponding error of all other implicit and explicit
methods.

Table V. Comparison of the accuracy of our PH scheme with that of other implicit and
explicit schemes subject to the Dirichlet boundary conditions (41) at s = 1 and 041

RMS RMS RMS
Method S, p (h=02 (h=01) (h = 0-05) r

Implicit schemes at s = 1 and t = 12-5 with t,;, = 45

FDM-4TH* 6=0,_(y=1) 2367 0-1246 0-008129 39
FEM-4TH* d=LB.y=1) 1-395 0-09269 0005912 40
FDM-4TH* 6=0,f_(y=0) 0-2393 0-01526 0-001053 39
FEM-4TH* d=%4B.(y=0) 02393 0-01522 0-000897 41
COMP o= =05 0-239287 0-015235 0-000974 39
PH 6= —% 0-154849 0-001036 0-000018 58
PH b= —3 0-146756 0-001271 0-000021 59

Implicit and explicit schemes at s = 0-41 and t = 9 with ¢t,,;, = 2

FTCS* exp. 1-2440 0-30230 0-07550 20
3L-4TH* exp. y=1 0073470 0-02290 0-001400 4-0
FDM-4TH* imp. 6=08_(y=0 0-03718 0-002407 0-000206 35
comMmpP =1 p=05 003585 0-002378 0-0000150 41
PH imp. é= —%io 0009774 0-000077 0-0000011 60
PH imp. 6= ~% 0-006532 0-000112 0-0000016 61
PH imp. 6= —3 0-020433 0-000274 0-:0000030 65
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Now we consider the solution of the diffusion equation (1) in the interval 0-1 < x < 1 with
initial value

u(x) = 2x + 4 cos(0-5xn) att=0 (45)
and subject to Neumann and Dirichlet boundary conditions which are given respectively by

0 2
; = g(t) = 2 — 27 sin(0-05m)e 2% at x = 0] (46)
X

and u = 2 at x = 1. The exact solution of the problem,
U, = 2x + 4 cos(0-Smx)e " *™ M (47)

will be used for the calculation of the RMS error of the numerical solution. Numerical solutions
of the above problem have been obtained with our scheme by applying the algebraic expressions
(36) and (40a) successively for the implementation of the Neumann boundary condition (46).
The exact solution (47) has been used to provide the initial solution at t = 5-2. The variations
in u(x, t) along the rod at ¢t = 5-2 and 12:8 are shown in Figure 2.

The results for the accuracy of our scheme combined with the corresponding second- and
fourth-order boundary condition formulae (36) and (40a) are given in Tables VI and VII
respectively. The RMS errors have been calculated for grids with A = 0-05625, 0-1125 and 0225
at t = 15-325 and for the indicated values of the parameters s and 6. We observe that for each
value of h the variation in the RMS error as s decreases is very small. It is clear that as s increases
to values larger than S(6) for a specific value of J, the induced instabilities of the solutions are
much stronger than the corresponding instabilities in the case of Dirichlet boundary conditions.
However, the most important conclusion arising from Tables VI and VII is the dramatic
reduction in the error of the numerical solution, which is due to the application of our
fourth-order formula (40a) for the Neumann boundary condition.

The error distributions (u — u,,); of our method combined with the boundary condition
formulae (36) and (40a) are given in Table VIII at ¢t = 15325 for s = 1 and § = —3. Clearly,
upon applying the expression (40a), we obtain a more evenly distributed truncation error than
that obtained by applying the expression (36).

Finally, in Table IX the accuracy of our scheme combined successively with the boundary
formulae (36) and (40a) is compared with that of the aforementioned implicit and explicit schemes.
The results have been obtained with the initial condition given by the exact solution (47) at
t = 5-2 and 0-8 for comparison reasons and in order to avoid errors in implementing the initial

4+ t= 5.2 .

t=12.8

2 1
01 X 0.5 1

Figure 2. Variation in u(x) subject to Neumann and Dirichlet boundary conditions #(0-1, t) = g{t) (equation (46)) and
u(l1, 1) = 2 °C respectively at t = 52 and 12-8
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Table V1. Estimation of the accuracy of our method subject to the Neumann

boundary condition (46) with the formula (36) of order O(h?) at t = 15:325

RMS RMS RMS
s é (h = 0-225) (h =0-1125) (h = 0-05625)
1 3 0-00277887 0-00062989 01512582 x 1073
3 0-00277920 0-00062990 0-1512583 x 103
s 0-00277994 0-00062991 0-1512584 x 103
0-00278193 0-00062993 0-1512588 x 1073
0-00278403 0-00062997 0-1512593 x 1073
03 3 0-00263299 0-00063573 0-1509789 x 1073
X 0-00263365 0-00063572 0-1509787 x 10?2
£ 0-00263223 0-:00063571 0-1509785 x 103
0-00262860 000063566 0-1509778 x 102
0-00262530 0-00063559 0-1509768 x 103
05 %5 0-00269564 0-00070591 0-3767557 x 10 ~1-24
35 0-00273437 0-00062258 0-1512538 x 1073
€ 0-00274923 0-00062207 0-1512528 x 10~?3
0-00273624 0-00062185 0-1512496 x 1073
0-00271905 0-00062148 01512446 x 103
1-0 = 0-00256303 0-00238894 04576342 x 10* —20-8
35 0-00252853 0-00086052 0-2909138 x 10 —-150
€ 0-00247875 0-00061606 0-8958980 x 102
0-00240957 0-00063866 01512088 x 1073
0-00236161 0-00063876 01511779 x 1073

Table VII. Estimation of the accuracy of our method subject to the Neumann boundary

condition (46) with our formula (40a) of order O(h*) at t = 15-325

RMS RMS RMS

s ] (h = 0-225) (h = 0-1125) (h = 0-05625) r

¢ 5 0-165876 x 1074 0994155 x 10~¢ 0-600231 x 1077 40
——?1—0 0162884 x 107 0989668 x 10~ 0-599539 x 1077 40
—% 0-156553 x 1074 0-980555 x 10~¢ 0598148 x 10~ 4.0
-3 0-140132 x 1074 0-956944 x 10~¢ 0594641 x 1077 40
-1 0-121604 x 10™# 0919308 x 10~ 0589290 x 10~ 40

03 &5 0196157 x 10~* 0-104160 x 1073 0605916 x 107 41
—?'—0 0201324 x 1074 0104971 x 1077 0607171 x 1077 41
—% 0213097 x 10™* 0106625 x 1073 0609687 x 1077 41
-3 0244916 x 1074 0110945 x 1073 0616046 x 1077 42
-1 0283345 x 1074 0117931 x 1077 0625774 x 1077 42

0-5 35 0269205 x 1074 0121158 x 1073 0255485 x 1072 -11
—ﬁ 0345528 x 107* 0-127991 x 107° 0642762 x 107 44
—¢ 0417189 x 1074 0-136676 x 107° 0-655519 x 1077 44
-3 0-589444 x 107* 0-159325 x 1077 0687880 x 1077 45
—1 0779329 x 1074 0-196093 x 1073 0737659 x 1077 47

1-0 & 0959651 x 1076 0524021 x 1073 4-024087 —195
—ﬁ 0-000071 0331457 x 1073 0-021447 —-12
—% 0-000161 0374454 x 1073 0495437 x 10~° —04
-3 0-000288 0491311 x 1073 0-118564 x 107° 54
-1 0000377 0672503 x 1077 0143286 + 107° 55

269
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Table VIIIL. Error distribution (¢ — u,,); of our solution subject to the Neumann boundary condition (46)
with the formulae (36) and (40a) at t = 15-325

Method and

boundary

conditions h x =01 0-325 0-550 0-775 1
PH + (36) 005625 0342 x 1073 01170 x 1073 07643 x 1074 02561 x 1074 0
s= 01125 0134 x 1072 06909 x 1073 0-2981 x 1073 09910 x 10°* 0
o= -4 0225 0:456 x 072 0-2718 x 1072 0-8618 x 1073 01847 x 107* 0
PH + (40a) 005625 —0219x 107 —01487 x 107% —09056 x 1077 —04253x 1077 O
s=1 01125 —0773 x 107% —06283 x 107° —04442 x 1075 —02301 x10"° O
b= -1 0225 —0415x107% —03774 x 107 —02795x 1073 —01483 x10"3 0

condition. For s =1 and h = 0-225 the PH scheme in conjuction with the formula (36) gives
on average an error 80% smaller than the error of the FMD implicit schemes and 7% larger
than the error of the COMP scheme. However, our scheme with the formula (40a) instead of
(36) produces an error 100% smaller than the average error of all other methods. For the same
parameters and using the boundary formula (40a), our scheme gives a truncation error 49%
smaller than the error produced by the corresponding COMP scheme. This error becomes
smaller by about 86% at h = 0-1125 and 96% at h = 0-05265 than the corresponding errors
produced by the COMP method. Similar results are obtained for s = 0-3.

Table IX. Comparison of the accuracy of our PH scheme with that of other implicit and
explicit schemes subject to the Neumann boundary condition (46) with the formulae (36) and
(40a) at s =1 and 0-3

RMS RMS RMS
Method 4, B (h = 0-225) (h =01125) (h = 0-05625) r
Implicit schemes at s = 1 and t = 15 with ¢,,, = 52
FDM-4TH* 6=0,f_(y=1) 001478 0-00539 0-00141 1-9
FDM-4TH* 6=0,_(y=0) 000912 0-00233 0-00053 21
COMP + (36) =4 8=05 0-002261 0-0006133 0-0001547 19
COMP + (40a) d=15 B=05 0-000569 0-0000352 0-0000022 39
PH + (36) d=—} 0-002409 0-0006386 0-0001512 20
PH + (36) = —1 00023616 0-0006387 0-0001511 20
PH + (40a) o= ~1 0-000288 0-000005 0-0000001 54
PH + (40a) o= —1 0-000377 0-000006 0-0000001 55
Implicit and explicit schemes at s = 0-3 and t = 9 with t;,;, = 0-8
FTCS* 0-001753 0-0004235 0-0001064 20
3L-4TH* 0004244 0-0009142 0-0002144 21
COMP + (36) 0=75 =05 0-002659 0-0006455 0-0001514 20
COMP + (40a) 5=+15 =05 0-000036 0-0000023 0-00000014 40
PH + (36) o= —% 0-0026712 0-0006467 0-0001515 20
PH + (36) 0= —3 0-0026673 0-0006466 0-0001515 2:0
PH + (40a) = —% 0-000022 0-0000011 0-00000006 41
PH + (40a) d=—3 0-000026 0-0000015 0-00000006 4-2
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It is obvious that the incorporation of a discretized formula of low accuracy for the
implementation of a Neumann boundary condition drastically reduces the effectiveness of an
otherwise highly accurate numerical method. However, our highly improved boundary condition
formula (40a) in conjunction with our numerical scheme yields highly accurate solutions with
truncation errors of order O(h®).

The generalization of our numerical method and of our formula for the Neumann boundary
condition to the solution of convection-dominated and multidimensional problems will be
presented in a series of forthcoming papers.
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